LIU, Xinrong ;LI, Hao ;FANG, Yu ;FAN, Diqing . Research on Passive Compliance Control Method of Offshore Wind Turbine Blade Grinding Robot. Articles in Press, [S.l.], v. 0, n.0, p. , december 2024. ISSN 0039-2480. Available at: <https://www.sv-jme.eu/article/research-on-passive-compliance-control-method-of-offshore-wind-turbine-blade-grinding-robot/>. Date accessed: 19 jan. 2025. doi:http://dx.doi.org/.
Liu, X., Li, H., Fang, Y., & Fan, D. (0). Research on Passive Compliance Control Method of Offshore Wind Turbine Blade Grinding Robot. Articles in Press, 0(0), . doi:http://dx.doi.org/
@article{., author = {Xinrong Liu and Hao Li and Yu Fang and Diqing Fan}, title = {Research on Passive Compliance Control Method of Offshore Wind Turbine Blade Grinding Robot}, journal = {Articles in Press}, volume = {0}, number = {0}, year = {0}, keywords = {improved active disturbance rejection control, gravity compensation, dead-zone compensation, offshore wind turbine blade, pneumatic loading system; }, abstract = {To address the issue of damage to offshore wind turbine blade during grinding due to external wind forces and other factors, and to maintain constant contact force during the grinding process, a constant force control device based on pneumatic system was designed. Additionally, a controller based on an improved Active Disturbance Rejection Control (ADRC) algorithm was proposed to control this device. Based on the analysis of the mechanism of the constant force control device, according to the relative order of the system, a second-order ADRC is designed. The controller utilizes a tracking differentiator (TD) to filter the input signal, an extended state observer (ESO) to estimate the total perturbation in the system, and a nonlinear state error feedback control law (NLSEF) for compensation. In order to solve the problems of electric proportional valve dead-zone characteristics, unknown interference during high altitude operation, and tilt angle changes during grinding, dead-zone compensation and gravity compensation algorithms were incorporated into the controller. Finally, the experimental platform is built to carry out experiments under various working conditions, and the experimental results show that the controller, compared with the traditional proportional-integral-derivative (PID) algorithm, improves the system regulation time by 59%, with an overshoot close to zero, both the absolute value of the maximum error and the mean square value of the error have been reduced to a large extent. It can be obtained that the controller has better force control accuracy and dynamic tracking performance, strong interference rejection capability and adaptability, and provides a theoretical basis for practical engineering applications.为解决海上风力机叶片磨削过程中受外力等因素损坏的问题,并保证磨削过程中接触力恒定,设计了一种基于气动系统的恒力控制装置。此外,提出了一种基于改进自抗扰控制算法的控制器来控制该装置。在分析恒力控制装置机理的基础上,根据系统的相对阶数,设计了二阶自抗扰控制器。该控制器采用跟踪微分器(TD)滤波输入信号,扩展状态观测器(ESO)估计系统中的总扰动,非线性状态误差反馈控制律(NLSEF)进行补偿。为解决电动比例阀的死区特性、高空工作时的未知干扰以及磨削时的倾斜角度变化等问题,在控制器中引入了死区补偿和重力补偿算法。最后搭建实验平台,在各种工况下进行实验,实验结果表明,与传统的比例-积分-导数(PID)算法相比,该控制器的系统调节时间提高了59%,超调量接近于零,最大误差绝对值和误差均方值都有很大程度的降低。结果表明,该控制器具有较好的力控精度和动态跟踪性能、较强的抗干扰能力和适应性,为实际工程应用提供了理论依据。为解决海上风力机叶片磨削过程中受外力等因素损坏的问题,并保证磨削过程中接触力恒定,设计了一种基于气动系统的恒力控制装置。此外,提出了一种基于改进自抗扰控制算法的控制器来控制该装置。在分析恒力控制装置机理的基础上,根据系统的相对阶数,设计了二阶自抗扰控制器。该控制器采用跟踪微分器(TD)滤波输入信号,扩展状态观测器(ESO)估计系统中的总扰动,非线性状态误差反馈控制律(NLSEF)进行补偿。为解决电动比例阀的死区特性、高空工作时的未知干扰以及磨削时的倾斜角度变化等问题,在控制器中引入了死区补偿和重力补偿算法。最后搭建实验平台,在各种工况下进行实验,实验结果表明,与传统的比例-积分-导数(PID)算法相比,该控制器的系统调节时间提高了59%,超调量接近于零,最大误差绝对值和误差均方值都有很大程度的降低。结果表明,该控制器具有较好的力控精度和动态跟踪性能、较强的抗干扰能力和适应性,为实际工程应用提供了理论依据。为解决海上风力机叶片磨削过程中受外力等因素损坏的问题,并保证磨削过程中接触力恒定,设计了一种基于气动系统的恒力控制装置。此外,提出了一种基于改进自抗扰控制算法的控制器来控制该装置。在分析恒力控制装置机理的基础上,根据系统的相对阶数,设计了二阶自抗扰控制器。该控制器采用跟踪微分器(TD)滤波输入信号,扩展状态观测器(ESO)估计系统中的总扰动,非线性状态误差反馈控制律(NLSEF)进行补偿。为解决电动比例阀的死区特性、高空工作时的未知干扰以及磨削时的倾斜角度变化等问题,在控制器中引入了死区补偿和重力补偿算法。最后搭建实验平台,在各种工况下进行实验,实验结果表明,与传统的比例-积分-导数(PID)算法相比,该控制器的系统调节时间提高了59%,超调量接近于零,最大误差绝对值和误差均方值都有很大程度的降低。结果表明,该控制器具有较好的力控精度和动态跟踪性能、较强的抗干扰能力和适应性,为实际工程应用提供了理论依据。}, issn = {0039-2480}, pages = {}, doi = {}, url = {https://www.sv-jme.eu/article/research-on-passive-compliance-control-method-of-offshore-wind-turbine-blade-grinding-robot/} }
Liu, X.,Li, H.,Fang, Y.,Fan, D. 0 December 0. Research on Passive Compliance Control Method of Offshore Wind Turbine Blade Grinding Robot. Articles in Press. [Online] 0:0
%A Liu, Xinrong %A Li, Hao %A Fang, Yu %A Fan, Diqing %D 0 %T Research on Passive Compliance Control Method of Offshore Wind Turbine Blade Grinding Robot %B 0 %9 improved active disturbance rejection control, gravity compensation, dead-zone compensation, offshore wind turbine blade, pneumatic loading system; %! Research on Passive Compliance Control Method of Offshore Wind Turbine Blade Grinding Robot %K improved active disturbance rejection control, gravity compensation, dead-zone compensation, offshore wind turbine blade, pneumatic loading system; %X To address the issue of damage to offshore wind turbine blade during grinding due to external wind forces and other factors, and to maintain constant contact force during the grinding process, a constant force control device based on pneumatic system was designed. Additionally, a controller based on an improved Active Disturbance Rejection Control (ADRC) algorithm was proposed to control this device. Based on the analysis of the mechanism of the constant force control device, according to the relative order of the system, a second-order ADRC is designed. The controller utilizes a tracking differentiator (TD) to filter the input signal, an extended state observer (ESO) to estimate the total perturbation in the system, and a nonlinear state error feedback control law (NLSEF) for compensation. In order to solve the problems of electric proportional valve dead-zone characteristics, unknown interference during high altitude operation, and tilt angle changes during grinding, dead-zone compensation and gravity compensation algorithms were incorporated into the controller. Finally, the experimental platform is built to carry out experiments under various working conditions, and the experimental results show that the controller, compared with the traditional proportional-integral-derivative (PID) algorithm, improves the system regulation time by 59%, with an overshoot close to zero, both the absolute value of the maximum error and the mean square value of the error have been reduced to a large extent. It can be obtained that the controller has better force control accuracy and dynamic tracking performance, strong interference rejection capability and adaptability, and provides a theoretical basis for practical engineering applications.为解决海上风力机叶片磨削过程中受外力等因素损坏的问题,并保证磨削过程中接触力恒定,设计了一种基于气动系统的恒力控制装置。此外,提出了一种基于改进自抗扰控制算法的控制器来控制该装置。在分析恒力控制装置机理的基础上,根据系统的相对阶数,设计了二阶自抗扰控制器。该控制器采用跟踪微分器(TD)滤波输入信号,扩展状态观测器(ESO)估计系统中的总扰动,非线性状态误差反馈控制律(NLSEF)进行补偿。为解决电动比例阀的死区特性、高空工作时的未知干扰以及磨削时的倾斜角度变化等问题,在控制器中引入了死区补偿和重力补偿算法。最后搭建实验平台,在各种工况下进行实验,实验结果表明,与传统的比例-积分-导数(PID)算法相比,该控制器的系统调节时间提高了59%,超调量接近于零,最大误差绝对值和误差均方值都有很大程度的降低。结果表明,该控制器具有较好的力控精度和动态跟踪性能、较强的抗干扰能力和适应性,为实际工程应用提供了理论依据。为解决海上风力机叶片磨削过程中受外力等因素损坏的问题,并保证磨削过程中接触力恒定,设计了一种基于气动系统的恒力控制装置。此外,提出了一种基于改进自抗扰控制算法的控制器来控制该装置。在分析恒力控制装置机理的基础上,根据系统的相对阶数,设计了二阶自抗扰控制器。该控制器采用跟踪微分器(TD)滤波输入信号,扩展状态观测器(ESO)估计系统中的总扰动,非线性状态误差反馈控制律(NLSEF)进行补偿。为解决电动比例阀的死区特性、高空工作时的未知干扰以及磨削时的倾斜角度变化等问题,在控制器中引入了死区补偿和重力补偿算法。最后搭建实验平台,在各种工况下进行实验,实验结果表明,与传统的比例-积分-导数(PID)算法相比,该控制器的系统调节时间提高了59%,超调量接近于零,最大误差绝对值和误差均方值都有很大程度的降低。结果表明,该控制器具有较好的力控精度和动态跟踪性能、较强的抗干扰能力和适应性,为实际工程应用提供了理论依据。为解决海上风力机叶片磨削过程中受外力等因素损坏的问题,并保证磨削过程中接触力恒定,设计了一种基于气动系统的恒力控制装置。此外,提出了一种基于改进自抗扰控制算法的控制器来控制该装置。在分析恒力控制装置机理的基础上,根据系统的相对阶数,设计了二阶自抗扰控制器。该控制器采用跟踪微分器(TD)滤波输入信号,扩展状态观测器(ESO)估计系统中的总扰动,非线性状态误差反馈控制律(NLSEF)进行补偿。为解决电动比例阀的死区特性、高空工作时的未知干扰以及磨削时的倾斜角度变化等问题,在控制器中引入了死区补偿和重力补偿算法。最后搭建实验平台,在各种工况下进行实验,实验结果表明,与传统的比例-积分-导数(PID)算法相比,该控制器的系统调节时间提高了59%,超调量接近于零,最大误差绝对值和误差均方值都有很大程度的降低。结果表明,该控制器具有较好的力控精度和动态跟踪性能、较强的抗干扰能力和适应性,为实际工程应用提供了理论依据。 %U https://www.sv-jme.eu/article/research-on-passive-compliance-control-method-of-offshore-wind-turbine-blade-grinding-robot/ %0 Journal Article %R %& %P 1 %J Articles in Press %V 0 %N 0 %@ 0039-2480 %8 2024-12-04 %7 2024-12-04
Liu, Xinrong, Hao Li, Yu Fang, & Diqing Fan. "Research on Passive Compliance Control Method of Offshore Wind Turbine Blade Grinding Robot." Articles in Press [Online], 0.0 (0): . Web. 19 Jan. 2025
TY - JOUR AU - Liu, Xinrong AU - Li, Hao AU - Fang, Yu AU - Fan, Diqing PY - 0 TI - Research on Passive Compliance Control Method of Offshore Wind Turbine Blade Grinding Robot JF - Articles in Press DO - KW - improved active disturbance rejection control, gravity compensation, dead-zone compensation, offshore wind turbine blade, pneumatic loading system; N2 - To address the issue of damage to offshore wind turbine blade during grinding due to external wind forces and other factors, and to maintain constant contact force during the grinding process, a constant force control device based on pneumatic system was designed. Additionally, a controller based on an improved Active Disturbance Rejection Control (ADRC) algorithm was proposed to control this device. Based on the analysis of the mechanism of the constant force control device, according to the relative order of the system, a second-order ADRC is designed. The controller utilizes a tracking differentiator (TD) to filter the input signal, an extended state observer (ESO) to estimate the total perturbation in the system, and a nonlinear state error feedback control law (NLSEF) for compensation. In order to solve the problems of electric proportional valve dead-zone characteristics, unknown interference during high altitude operation, and tilt angle changes during grinding, dead-zone compensation and gravity compensation algorithms were incorporated into the controller. Finally, the experimental platform is built to carry out experiments under various working conditions, and the experimental results show that the controller, compared with the traditional proportional-integral-derivative (PID) algorithm, improves the system regulation time by 59%, with an overshoot close to zero, both the absolute value of the maximum error and the mean square value of the error have been reduced to a large extent. It can be obtained that the controller has better force control accuracy and dynamic tracking performance, strong interference rejection capability and adaptability, and provides a theoretical basis for practical engineering applications.为解决海上风力机叶片磨削过程中受外力等因素损坏的问题,并保证磨削过程中接触力恒定,设计了一种基于气动系统的恒力控制装置。此外,提出了一种基于改进自抗扰控制算法的控制器来控制该装置。在分析恒力控制装置机理的基础上,根据系统的相对阶数,设计了二阶自抗扰控制器。该控制器采用跟踪微分器(TD)滤波输入信号,扩展状态观测器(ESO)估计系统中的总扰动,非线性状态误差反馈控制律(NLSEF)进行补偿。为解决电动比例阀的死区特性、高空工作时的未知干扰以及磨削时的倾斜角度变化等问题,在控制器中引入了死区补偿和重力补偿算法。最后搭建实验平台,在各种工况下进行实验,实验结果表明,与传统的比例-积分-导数(PID)算法相比,该控制器的系统调节时间提高了59%,超调量接近于零,最大误差绝对值和误差均方值都有很大程度的降低。结果表明,该控制器具有较好的力控精度和动态跟踪性能、较强的抗干扰能力和适应性,为实际工程应用提供了理论依据。为解决海上风力机叶片磨削过程中受外力等因素损坏的问题,并保证磨削过程中接触力恒定,设计了一种基于气动系统的恒力控制装置。此外,提出了一种基于改进自抗扰控制算法的控制器来控制该装置。在分析恒力控制装置机理的基础上,根据系统的相对阶数,设计了二阶自抗扰控制器。该控制器采用跟踪微分器(TD)滤波输入信号,扩展状态观测器(ESO)估计系统中的总扰动,非线性状态误差反馈控制律(NLSEF)进行补偿。为解决电动比例阀的死区特性、高空工作时的未知干扰以及磨削时的倾斜角度变化等问题,在控制器中引入了死区补偿和重力补偿算法。最后搭建实验平台,在各种工况下进行实验,实验结果表明,与传统的比例-积分-导数(PID)算法相比,该控制器的系统调节时间提高了59%,超调量接近于零,最大误差绝对值和误差均方值都有很大程度的降低。结果表明,该控制器具有较好的力控精度和动态跟踪性能、较强的抗干扰能力和适应性,为实际工程应用提供了理论依据。为解决海上风力机叶片磨削过程中受外力等因素损坏的问题,并保证磨削过程中接触力恒定,设计了一种基于气动系统的恒力控制装置。此外,提出了一种基于改进自抗扰控制算法的控制器来控制该装置。在分析恒力控制装置机理的基础上,根据系统的相对阶数,设计了二阶自抗扰控制器。该控制器采用跟踪微分器(TD)滤波输入信号,扩展状态观测器(ESO)估计系统中的总扰动,非线性状态误差反馈控制律(NLSEF)进行补偿。为解决电动比例阀的死区特性、高空工作时的未知干扰以及磨削时的倾斜角度变化等问题,在控制器中引入了死区补偿和重力补偿算法。最后搭建实验平台,在各种工况下进行实验,实验结果表明,与传统的比例-积分-导数(PID)算法相比,该控制器的系统调节时间提高了59%,超调量接近于零,最大误差绝对值和误差均方值都有很大程度的降低。结果表明,该控制器具有较好的力控精度和动态跟踪性能、较强的抗干扰能力和适应性,为实际工程应用提供了理论依据。 UR - https://www.sv-jme.eu/article/research-on-passive-compliance-control-method-of-offshore-wind-turbine-blade-grinding-robot/
@article{{}{.}, author = {Liu, X., Li, H., Fang, Y., Fan, D.}, title = {Research on Passive Compliance Control Method of Offshore Wind Turbine Blade Grinding Robot}, journal = {Articles in Press}, volume = {0}, number = {0}, year = {0}, doi = {}, url = {https://www.sv-jme.eu/article/research-on-passive-compliance-control-method-of-offshore-wind-turbine-blade-grinding-robot/} }
TY - JOUR AU - Liu, Xinrong AU - Li, Hao AU - Fang, Yu AU - Fan, Diqing PY - 2024/12/04 TI - Research on Passive Compliance Control Method of Offshore Wind Turbine Blade Grinding Robot JF - Articles in Press; Vol 0, No 0 (0): Articles in Press DO - KW - improved active disturbance rejection control, gravity compensation, dead-zone compensation, offshore wind turbine blade, pneumatic loading system, N2 - To address the issue of damage to offshore wind turbine blade during grinding due to external wind forces and other factors, and to maintain constant contact force during the grinding process, a constant force control device based on pneumatic system was designed. Additionally, a controller based on an improved Active Disturbance Rejection Control (ADRC) algorithm was proposed to control this device. Based on the analysis of the mechanism of the constant force control device, according to the relative order of the system, a second-order ADRC is designed. The controller utilizes a tracking differentiator (TD) to filter the input signal, an extended state observer (ESO) to estimate the total perturbation in the system, and a nonlinear state error feedback control law (NLSEF) for compensation. In order to solve the problems of electric proportional valve dead-zone characteristics, unknown interference during high altitude operation, and tilt angle changes during grinding, dead-zone compensation and gravity compensation algorithms were incorporated into the controller. Finally, the experimental platform is built to carry out experiments under various working conditions, and the experimental results show that the controller, compared with the traditional proportional-integral-derivative (PID) algorithm, improves the system regulation time by 59%, with an overshoot close to zero, both the absolute value of the maximum error and the mean square value of the error have been reduced to a large extent. It can be obtained that the controller has better force control accuracy and dynamic tracking performance, strong interference rejection capability and adaptability, and provides a theoretical basis for practical engineering applications.为解决海上风力机叶片磨削过程中受外力等因素损坏的问题,并保证磨削过程中接触力恒定,设计了一种基于气动系统的恒力控制装置。此外,提出了一种基于改进自抗扰控制算法的控制器来控制该装置。在分析恒力控制装置机理的基础上,根据系统的相对阶数,设计了二阶自抗扰控制器。该控制器采用跟踪微分器(TD)滤波输入信号,扩展状态观测器(ESO)估计系统中的总扰动,非线性状态误差反馈控制律(NLSEF)进行补偿。为解决电动比例阀的死区特性、高空工作时的未知干扰以及磨削时的倾斜角度变化等问题,在控制器中引入了死区补偿和重力补偿算法。最后搭建实验平台,在各种工况下进行实验,实验结果表明,与传统的比例-积分-导数(PID)算法相比,该控制器的系统调节时间提高了59%,超调量接近于零,最大误差绝对值和误差均方值都有很大程度的降低。结果表明,该控制器具有较好的力控精度和动态跟踪性能、较强的抗干扰能力和适应性,为实际工程应用提供了理论依据。为解决海上风力机叶片磨削过程中受外力等因素损坏的问题,并保证磨削过程中接触力恒定,设计了一种基于气动系统的恒力控制装置。此外,提出了一种基于改进自抗扰控制算法的控制器来控制该装置。在分析恒力控制装置机理的基础上,根据系统的相对阶数,设计了二阶自抗扰控制器。该控制器采用跟踪微分器(TD)滤波输入信号,扩展状态观测器(ESO)估计系统中的总扰动,非线性状态误差反馈控制律(NLSEF)进行补偿。为解决电动比例阀的死区特性、高空工作时的未知干扰以及磨削时的倾斜角度变化等问题,在控制器中引入了死区补偿和重力补偿算法。最后搭建实验平台,在各种工况下进行实验,实验结果表明,与传统的比例-积分-导数(PID)算法相比,该控制器的系统调节时间提高了59%,超调量接近于零,最大误差绝对值和误差均方值都有很大程度的降低。结果表明,该控制器具有较好的力控精度和动态跟踪性能、较强的抗干扰能力和适应性,为实际工程应用提供了理论依据。为解决海上风力机叶片磨削过程中受外力等因素损坏的问题,并保证磨削过程中接触力恒定,设计了一种基于气动系统的恒力控制装置。此外,提出了一种基于改进自抗扰控制算法的控制器来控制该装置。在分析恒力控制装置机理的基础上,根据系统的相对阶数,设计了二阶自抗扰控制器。该控制器采用跟踪微分器(TD)滤波输入信号,扩展状态观测器(ESO)估计系统中的总扰动,非线性状态误差反馈控制律(NLSEF)进行补偿。为解决电动比例阀的死区特性、高空工作时的未知干扰以及磨削时的倾斜角度变化等问题,在控制器中引入了死区补偿和重力补偿算法。最后搭建实验平台,在各种工况下进行实验,实验结果表明,与传统的比例-积分-导数(PID)算法相比,该控制器的系统调节时间提高了59%,超调量接近于零,最大误差绝对值和误差均方值都有很大程度的降低。结果表明,该控制器具有较好的力控精度和动态跟踪性能、较强的抗干扰能力和适应性,为实际工程应用提供了理论依据。 UR - https://www.sv-jme.eu/article/research-on-passive-compliance-control-method-of-offshore-wind-turbine-blade-grinding-robot/
Liu, Xinrong, Li, Hao, Fang, Yu, AND Fan, Diqing. "Research on Passive Compliance Control Method of Offshore Wind Turbine Blade Grinding Robot" Articles in Press [Online], Volume 0 Number 0 (04 December 2024)
Articles in Press
To address the issue of damage to offshore wind turbine blade during grinding due to external wind forces and other factors, and to maintain constant contact force during the grinding process, a constant force control device based on pneumatic system was designed. Additionally, a controller based on an improved Active Disturbance Rejection Control (ADRC) algorithm was proposed to control this device. Based on the analysis of the mechanism of the constant force control device, according to the relative order of the system, a second-order ADRC is designed. The controller utilizes a tracking differentiator (TD) to filter the input signal, an extended state observer (ESO) to estimate the total perturbation in the system, and a nonlinear state error feedback control law (NLSEF) for compensation. In order to solve the problems of electric proportional valve dead-zone characteristics, unknown interference during high altitude operation, and tilt angle changes during grinding, dead-zone compensation and gravity compensation algorithms were incorporated into the controller. Finally, the experimental platform is built to carry out experiments under various working conditions, and the experimental results show that the controller, compared with the traditional proportional-integral-derivative (PID) algorithm, improves the system regulation time by 59%, with an overshoot close to zero, both the absolute value of the maximum error and the mean square value of the error have been reduced to a large extent. It can be obtained that the controller has better force control accuracy and dynamic tracking performance, strong interference rejection capability and adaptability, and provides a theoretical basis for practical engineering applications.为解决海上风力机叶片磨削过程中受外力等因素损坏的问题,并保证磨削过程中接触力恒定,设计了一种基于气动系统的恒力控制装置。此外,提出了一种基于改进自抗扰控制算法的控制器来控制该装置。在分析恒力控制装置机理的基础上,根据系统的相对阶数,设计了二阶自抗扰控制器。该控制器采用跟踪微分器(TD)滤波输入信号,扩展状态观测器(ESO)估计系统中的总扰动,非线性状态误差反馈控制律(NLSEF)进行补偿。为解决电动比例阀的死区特性、高空工作时的未知干扰以及磨削时的倾斜角度变化等问题,在控制器中引入了死区补偿和重力补偿算法。最后搭建实验平台,在各种工况下进行实验,实验结果表明,与传统的比例-积分-导数(PID)算法相比,该控制器的系统调节时间提高了59%,超调量接近于零,最大误差绝对值和误差均方值都有很大程度的降低。结果表明,该控制器具有较好的力控精度和动态跟踪性能、较强的抗干扰能力和适应性,为实际工程应用提供了理论依据。为解决海上风力机叶片磨削过程中受外力等因素损坏的问题,并保证磨削过程中接触力恒定,设计了一种基于气动系统的恒力控制装置。此外,提出了一种基于改进自抗扰控制算法的控制器来控制该装置。在分析恒力控制装置机理的基础上,根据系统的相对阶数,设计了二阶自抗扰控制器。该控制器采用跟踪微分器(TD)滤波输入信号,扩展状态观测器(ESO)估计系统中的总扰动,非线性状态误差反馈控制律(NLSEF)进行补偿。为解决电动比例阀的死区特性、高空工作时的未知干扰以及磨削时的倾斜角度变化等问题,在控制器中引入了死区补偿和重力补偿算法。最后搭建实验平台,在各种工况下进行实验,实验结果表明,与传统的比例-积分-导数(PID)算法相比,该控制器的系统调节时间提高了59%,超调量接近于零,最大误差绝对值和误差均方值都有很大程度的降低。结果表明,该控制器具有较好的力控精度和动态跟踪性能、较强的抗干扰能力和适应性,为实际工程应用提供了理论依据。为解决海上风力机叶片磨削过程中受外力等因素损坏的问题,并保证磨削过程中接触力恒定,设计了一种基于气动系统的恒力控制装置。此外,提出了一种基于改进自抗扰控制算法的控制器来控制该装置。在分析恒力控制装置机理的基础上,根据系统的相对阶数,设计了二阶自抗扰控制器。该控制器采用跟踪微分器(TD)滤波输入信号,扩展状态观测器(ESO)估计系统中的总扰动,非线性状态误差反馈控制律(NLSEF)进行补偿。为解决电动比例阀的死区特性、高空工作时的未知干扰以及磨削时的倾斜角度变化等问题,在控制器中引入了死区补偿和重力补偿算法。最后搭建实验平台,在各种工况下进行实验,实验结果表明,与传统的比例-积分-导数(PID)算法相比,该控制器的系统调节时间提高了59%,超调量接近于零,最大误差绝对值和误差均方值都有很大程度的降低。结果表明,该控制器具有较好的力控精度和动态跟踪性能、较强的抗干扰能力和适应性,为实际工程应用提供了理论依据。