SOLDO, Vladimir ;ĆURKO, Tonko ;ZANKI, Vlasta . Experimental Testing of the Heat Transfer in a Lorenz Process Using Zeotropic Mixtures. Strojniški vestnik - Journal of Mechanical Engineering, [S.l.], v. 49, n.2, p. 90-99, july 2017. ISSN 0039-2480. Available at: <https://www.sv-jme.eu/article/experimental-testing-of-the-heat-transfer-in-a-lorenz-process-using-zeotropic-mixtures/>. Date accessed: 19 jan. 2025. doi:http://dx.doi.org/.
Soldo, V., Ćurko, T., & Zanki, V. (2003). Experimental Testing of the Heat Transfer in a Lorenz Process Using Zeotropic Mixtures. Strojniški vestnik - Journal of Mechanical Engineering, 49(2), 90-99. doi:http://dx.doi.org/
@article{., author = {Vladimir Soldo and Tonko Ćurko and Vlasta Zanki}, title = {Experimental Testing of the Heat Transfer in a Lorenz Process Using Zeotropic Mixtures}, journal = {Strojniški vestnik - Journal of Mechanical Engineering}, volume = {49}, number = {2}, year = {2003}, keywords = {zeotropic mixtures; Lorentz process; thermodynamic efficiency; heat transfer; }, abstract = {A comparison has been made between the thermodynamic efficiency of a single-component refrigerant R22 and a substitute zeotropic mixture R407C in a system operating under the same conditions. The construction of a refrigerating system that uses R22 and R407C is presented, along with measurements of all the relevant data (temperature, pressure and flow rate), their acquisition, and their analysis. Our results show that the refrigerant R407C is a good substitute for the refrigerant R22 at higher evaporation temperatures. Although the theoretical results suggest that R407C will increase efficiency compared to R22, the experimental results did not confirm it. This because in the process with the refrigerant R407C the heat-transfer coefficients are lower.}, issn = {0039-2480}, pages = {90-99}, doi = {}, url = {https://www.sv-jme.eu/article/experimental-testing-of-the-heat-transfer-in-a-lorenz-process-using-zeotropic-mixtures/} }
Soldo, V.,Ćurko, T.,Zanki, V. 2003 July 49. Experimental Testing of the Heat Transfer in a Lorenz Process Using Zeotropic Mixtures. Strojniški vestnik - Journal of Mechanical Engineering. [Online] 49:2
%A Soldo, Vladimir %A Ćurko, Tonko %A Zanki, Vlasta %D 2003 %T Experimental Testing of the Heat Transfer in a Lorenz Process Using Zeotropic Mixtures %B 2003 %9 zeotropic mixtures; Lorentz process; thermodynamic efficiency; heat transfer; %! Experimental Testing of the Heat Transfer in a Lorenz Process Using Zeotropic Mixtures %K zeotropic mixtures; Lorentz process; thermodynamic efficiency; heat transfer; %X A comparison has been made between the thermodynamic efficiency of a single-component refrigerant R22 and a substitute zeotropic mixture R407C in a system operating under the same conditions. The construction of a refrigerating system that uses R22 and R407C is presented, along with measurements of all the relevant data (temperature, pressure and flow rate), their acquisition, and their analysis. Our results show that the refrigerant R407C is a good substitute for the refrigerant R22 at higher evaporation temperatures. Although the theoretical results suggest that R407C will increase efficiency compared to R22, the experimental results did not confirm it. This because in the process with the refrigerant R407C the heat-transfer coefficients are lower. %U https://www.sv-jme.eu/article/experimental-testing-of-the-heat-transfer-in-a-lorenz-process-using-zeotropic-mixtures/ %0 Journal Article %R %& 90 %P 10 %J Strojniški vestnik - Journal of Mechanical Engineering %V 49 %N 2 %@ 0039-2480 %8 2017-07-07 %7 2017-07-07
Soldo, Vladimir, Tonko Ćurko, & Vlasta Zanki. "Experimental Testing of the Heat Transfer in a Lorenz Process Using Zeotropic Mixtures." Strojniški vestnik - Journal of Mechanical Engineering [Online], 49.2 (2003): 90-99. Web. 19 Jan. 2025
TY - JOUR AU - Soldo, Vladimir AU - Ćurko, Tonko AU - Zanki, Vlasta PY - 2003 TI - Experimental Testing of the Heat Transfer in a Lorenz Process Using Zeotropic Mixtures JF - Strojniški vestnik - Journal of Mechanical Engineering DO - KW - zeotropic mixtures; Lorentz process; thermodynamic efficiency; heat transfer; N2 - A comparison has been made between the thermodynamic efficiency of a single-component refrigerant R22 and a substitute zeotropic mixture R407C in a system operating under the same conditions. The construction of a refrigerating system that uses R22 and R407C is presented, along with measurements of all the relevant data (temperature, pressure and flow rate), their acquisition, and their analysis. Our results show that the refrigerant R407C is a good substitute for the refrigerant R22 at higher evaporation temperatures. Although the theoretical results suggest that R407C will increase efficiency compared to R22, the experimental results did not confirm it. This because in the process with the refrigerant R407C the heat-transfer coefficients are lower. UR - https://www.sv-jme.eu/article/experimental-testing-of-the-heat-transfer-in-a-lorenz-process-using-zeotropic-mixtures/
@article{{}{.}, author = {Soldo, V., Ćurko, T., Zanki, V.}, title = {Experimental Testing of the Heat Transfer in a Lorenz Process Using Zeotropic Mixtures}, journal = {Strojniški vestnik - Journal of Mechanical Engineering}, volume = {49}, number = {2}, year = {2003}, doi = {}, url = {https://www.sv-jme.eu/article/experimental-testing-of-the-heat-transfer-in-a-lorenz-process-using-zeotropic-mixtures/} }
TY - JOUR AU - Soldo, Vladimir AU - Ćurko, Tonko AU - Zanki, Vlasta PY - 2017/07/07 TI - Experimental Testing of the Heat Transfer in a Lorenz Process Using Zeotropic Mixtures JF - Strojniški vestnik - Journal of Mechanical Engineering; Vol 49, No 2 (2003): Strojniški vestnik - Journal of Mechanical Engineering DO - KW - zeotropic mixtures, Lorentz process, thermodynamic efficiency, heat transfer, N2 - A comparison has been made between the thermodynamic efficiency of a single-component refrigerant R22 and a substitute zeotropic mixture R407C in a system operating under the same conditions. The construction of a refrigerating system that uses R22 and R407C is presented, along with measurements of all the relevant data (temperature, pressure and flow rate), their acquisition, and their analysis. Our results show that the refrigerant R407C is a good substitute for the refrigerant R22 at higher evaporation temperatures. Although the theoretical results suggest that R407C will increase efficiency compared to R22, the experimental results did not confirm it. This because in the process with the refrigerant R407C the heat-transfer coefficients are lower. UR - https://www.sv-jme.eu/article/experimental-testing-of-the-heat-transfer-in-a-lorenz-process-using-zeotropic-mixtures/
Soldo, Vladimir, Ćurko, Tonko, AND Zanki, Vlasta. "Experimental Testing of the Heat Transfer in a Lorenz Process Using Zeotropic Mixtures" Strojniški vestnik - Journal of Mechanical Engineering [Online], Volume 49 Number 2 (07 July 2017)
Strojniški vestnik - Journal of Mechanical Engineering 49(2003)2, 90-99
© The Authors, CC-BY 4.0 Int. Change in copyright policy from 2022, Jan 1st.
A comparison has been made between the thermodynamic efficiency of a single-component refrigerant R22 and a substitute zeotropic mixture R407C in a system operating under the same conditions. The construction of a refrigerating system that uses R22 and R407C is presented, along with measurements of all the relevant data (temperature, pressure and flow rate), their acquisition, and their analysis. Our results show that the refrigerant R407C is a good substitute for the refrigerant R22 at higher evaporation temperatures. Although the theoretical results suggest that R407C will increase efficiency compared to R22, the experimental results did not confirm it. This because in the process with the refrigerant R407C the heat-transfer coefficients are lower.