ŠKERGET, Leopold ;ŽAGAR, Ivan ;REK, Zlatko ;DELIČ, Marjan ;HRIBERŠEK, Matjaž . Computational Fluid Dynamics. Strojniški vestnik - Journal of Mechanical Engineering, [S.l.], v. 39, n.5-8, p. 161-180, november 2017. ISSN 0039-2480. Available at: <https://www.sv-jme.eu/article/computational-fluid-dynamics/>. Date accessed: 22 jan. 2025. doi:http://dx.doi.org/.
Škerget, L., Žagar, I., Rek, Z., Delič, M., & Hriberšek, M. (1993). Computational Fluid Dynamics. Strojniški vestnik - Journal of Mechanical Engineering, 39(5-8), 161-180. doi:http://dx.doi.org/
@article{., author = {Leopold Škerget and Ivan Žagar and Zlatko Rek and Marjan Delič and Matjaž Hriberšek}, title = {Computational Fluid Dynamics}, journal = {Strojniški vestnik - Journal of Mechanical Engineering}, volume = {39}, number = {5-8}, year = {1993}, keywords = {fluid dynamics; }, abstract = {The paper deals with numerical solution of transport phenomena in fluids. Presented boundary-domain ntegral method offers some advantages in comparison with other domain-type methods (finite differences or finite elements methods). Advantages arise from application of different Green’s functions depending on the type of problem under consideration. On this basis different numerical schemes are developed, among which the most promising is the scheme with Green’s functions of diffusive-convective equation, which is stable regardless of Peclet or Reynolds number values. Application of subdomain technique and modern iterative methods enables great reduction of computer time and memory demands of the method.}, issn = {0039-2480}, pages = {161-180}, doi = {}, url = {https://www.sv-jme.eu/article/computational-fluid-dynamics/} }
Škerget, L.,Žagar, I.,Rek, Z.,Delič, M.,Hriberšek, M. 1993 November 39. Computational Fluid Dynamics. Strojniški vestnik - Journal of Mechanical Engineering. [Online] 39:5-8
%A Škerget, Leopold %A Žagar, Ivan %A Rek, Zlatko %A Delič, Marjan %A Hriberšek, Matjaž %D 1993 %T Computational Fluid Dynamics %B 1993 %9 fluid dynamics; %! Computational Fluid Dynamics %K fluid dynamics; %X The paper deals with numerical solution of transport phenomena in fluids. Presented boundary-domain ntegral method offers some advantages in comparison with other domain-type methods (finite differences or finite elements methods). Advantages arise from application of different Green’s functions depending on the type of problem under consideration. On this basis different numerical schemes are developed, among which the most promising is the scheme with Green’s functions of diffusive-convective equation, which is stable regardless of Peclet or Reynolds number values. Application of subdomain technique and modern iterative methods enables great reduction of computer time and memory demands of the method. %U https://www.sv-jme.eu/article/computational-fluid-dynamics/ %0 Journal Article %R %& 161 %P 20 %J Strojniški vestnik - Journal of Mechanical Engineering %V 39 %N 5-8 %@ 0039-2480 %8 2017-11-11 %7 2017-11-11
Škerget, Leopold, Ivan Žagar, Zlatko Rek, Marjan Delič, & Matjaž Hriberšek. "Computational Fluid Dynamics." Strojniški vestnik - Journal of Mechanical Engineering [Online], 39.5-8 (1993): 161-180. Web. 22 Jan. 2025
TY - JOUR AU - Škerget, Leopold AU - Žagar, Ivan AU - Rek, Zlatko AU - Delič, Marjan AU - Hriberšek, Matjaž PY - 1993 TI - Computational Fluid Dynamics JF - Strojniški vestnik - Journal of Mechanical Engineering DO - KW - fluid dynamics; N2 - The paper deals with numerical solution of transport phenomena in fluids. Presented boundary-domain ntegral method offers some advantages in comparison with other domain-type methods (finite differences or finite elements methods). Advantages arise from application of different Green’s functions depending on the type of problem under consideration. On this basis different numerical schemes are developed, among which the most promising is the scheme with Green’s functions of diffusive-convective equation, which is stable regardless of Peclet or Reynolds number values. Application of subdomain technique and modern iterative methods enables great reduction of computer time and memory demands of the method. UR - https://www.sv-jme.eu/article/computational-fluid-dynamics/
@article{{}{.}, author = {Škerget, L., Žagar, I., Rek, Z., Delič, M., Hriberšek, M.}, title = {Computational Fluid Dynamics}, journal = {Strojniški vestnik - Journal of Mechanical Engineering}, volume = {39}, number = {5-8}, year = {1993}, doi = {}, url = {https://www.sv-jme.eu/article/computational-fluid-dynamics/} }
TY - JOUR AU - Škerget, Leopold AU - Žagar, Ivan AU - Rek, Zlatko AU - Delič, Marjan AU - Hriberšek, Matjaž PY - 2017/11/11 TI - Computational Fluid Dynamics JF - Strojniški vestnik - Journal of Mechanical Engineering; Vol 39, No 5-8 (1993): Strojniški vestnik - Journal of Mechanical Engineering DO - KW - fluid dynamics, N2 - The paper deals with numerical solution of transport phenomena in fluids. Presented boundary-domain ntegral method offers some advantages in comparison with other domain-type methods (finite differences or finite elements methods). Advantages arise from application of different Green’s functions depending on the type of problem under consideration. On this basis different numerical schemes are developed, among which the most promising is the scheme with Green’s functions of diffusive-convective equation, which is stable regardless of Peclet or Reynolds number values. Application of subdomain technique and modern iterative methods enables great reduction of computer time and memory demands of the method. UR - https://www.sv-jme.eu/article/computational-fluid-dynamics/
Škerget, Leopold, Žagar, Ivan, Rek, Zlatko, Delič, Marjan, AND Hriberšek, Matjaž. "Computational Fluid Dynamics" Strojniški vestnik - Journal of Mechanical Engineering [Online], Volume 39 Number 5-8 (11 November 2017)
Strojniški vestnik - Journal of Mechanical Engineering 39(1993)5-8, 161-180
© The Authors, CC-BY 4.0 Int. Change in copyright policy from 2022, Jan 1st.
The paper deals with numerical solution of transport phenomena in fluids. Presented boundary-domain ntegral method offers some advantages in comparison with other domain-type methods (finite differences or finite elements methods). Advantages arise from application of different Green’s functions depending on the type of problem under consideration. On this basis different numerical schemes are developed, among which the most promising is the scheme with Green’s functions of diffusive-convective equation, which is stable regardless of Peclet or Reynolds number values. Application of subdomain technique and modern iterative methods enables great reduction of computer time and memory demands of the method.